| FUNCTION |
BASIC EQUIVALENT |
| SECANT |
SEC(X)=1/COS(X) |
| COSECANT |
CSC(X)=1/SIN(X) |
| COTANGENT |
COT(X)=1/TAN(X) |
| INVERSE SINE |
ARCSIN(X)=ATN(X/SQR(-X*X+1)) |
| INVERSE COSINE |
ARCCOS(X)=-ATN(X/SQR(-X*X+1))+{pi}/2 |
| INVERSE SECANT |
ARCSEC(X)=ATN(SQR(X*X-1)) |
| INVERSE COSECANT |
ARCCSC(X)=ATN(1/SQR(X*X-1)) |
| INVERSE COTANGENT |
ARCCOT(X)=ATN(1/X) |
| HYPERBOLIC SINE |
SINH(X)=(EXP(X)-EXP(-X))/2 |
| HYPERBOLIC COSINE |
COSH(X)=(EXP(X)+EXP(-X))/2 |
| HYPERBOLIC TANGENT |
TANH(X)=(EXP(X)-EXP(-X))/(EXP(X)+EXP(-X)) |
| HYPERBOLIC SECANT |
SECH(X)=2/(EXP(X)+EXP(-X)) |
| HYPERBOLIC COSECANT |
CSCH(X)=2/(EXP(X)-EXP(-X)) |
| HYPERBOLIC COTANGENT |
COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2+1 |
| INVERSE HYPERBOLIC SINE |
ARCSINH(X)=LOG(X+SQR(X*X+1)) |
| INVERSE HYPERBOLIC COSINE |
ARCCOSH(X)=LOG(X+SQR(X*X-1)) |
| INVERSE HYPERBOLIC TANGENT |
ARCTANH(X)=LOG((1+X)/(1-X))/2 |
| INVERSE HYPERBOLIC SECANT |
ARCSECH(X)=LOG(SQR(-X*X+1)+1)/X) |
| INVERSE HYPERBOLIC COSECANT |
ARCCSCH(X)=LOG((SGN(X)*SQR(X*X+1)+1/X) |
| INVERSE HYPERBOLIC COTANGENT |
ARCCOTH(X)=LOG((X+1)/(X-1))/2 |